FUNDAMENTALS of EEG TECHNOLOGY

All you need to know about electricity and electronics as they relate to EEG

Mr. John R. Ives, B.Sc.
University of Western Ontario
London, Ontario, Canada

jives@uwo.ca
LEARNING OBJECTIVES

• Basic and applied physics as they relate to EEG
• Practical issues related to the acquisition of EEG
• Basic features of digital EEG
Disclosures: Conflict of Interest

- Ives EEG Solutions, Inc
- Patent: Ambulatory EEG: DigiTrace/SleepMed
- Patent: fMRI/EEG: NeuroScan/Compumedics
- Stellate, Ad-Tech, MVAP, Grass
- Jordan Neuroscience
Source of the EEG

• Neurons
 – post synaptic junction of the pyramidal cell

• Cerebral cortex
 – 2mm thick by 1.6 m² (16,000 cm² or 17.2 sq ft)

• Spike in the EEG
 – at least 6 cm² of synchronous cortex (0.04%)

• Problem
 – human cortex is a super origami figure surrounded by bone and skin
Spike in a Cortex-Stack

1.6m² area of cortex, 6cm² of epileptic spike activity, 24 surface EEG electrodes
References

- http:www.ccs.fau.edu/~bressler/EDU/NSP/Modules/IV.pdf
Pyramidal Neurons

- Perpendicular to cortex
- Elongated neurons
- Parallel with apical dendrites
Electromagnetic Field

- EEG measures electrical potential
- MEG measures magnetic activity
- EEG and MEG are 90 degrees
- EEG “sees” gyri activity
- MEG “sees” sulcus activity
Solid Angle EEG Potential

- Gloor 1975
- \(P = \text{proportional to } \Omega \)
- Where \(\Omega = \Omega_+ - \Omega_- \)
 - \(P \) is EEG potential
 - \(\Omega \) solid angle
How to Record EEG

- Transducer: electrode
- Amplifier: increase signal amplitude
- Display: was paper now CPU screen
- Storage: was paper now digital media
- # of channels: 2, 4, 8, 16, 24, 32, 64, 128, 256
- Montage: sequenced bipolar, now referential
- Surface invasive

EEG Electrodes

• **SURFACE**
 – Cup or disc electrode: metal or plastic
 – Subdermal needle electrode
 – Subdermal wire electrode

• **Experimental**
 – “dry” or capacitive
 – nano electrodes

• **INVASIVE**
 – Depth electrode
 – Strip electrode
 – Grid electrode
EEG Electrodes: Ideal

- **Low Resistance**
 - large surface area
 - rough surface

- **Low DC Offset**
 - Silver-Silver/Chloride (Ag-Ag/Cl)
 - Similar material, do not mix electrode types
 - Pure silver, no contaminants

- **Imaging Compatible**
 - convenient; particularly, in the ICU during cEEG

- **Ideal is pure silver with a Ag-Ag/Cl coat**
 - Ok for scalp and subdermal
 - not OK for invasive neuronal contact, best with SS, Au, Pt
EEG Electrodes

FIG. 10.1. Charge layer at electrode—electrolyte interface. Modified from Geddes (13).

FIG. 10.2. Series equivalent circuit of a single electrode in contact with an electrolyte. Redrawn from Geddes (14).

TABLE 10.1. Typical half-cell potential values

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Electrode potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb)</td>
<td>-0.13</td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>+0.14</td>
</tr>
<tr>
<td>Silver chloride (AgCl)</td>
<td>+0.22</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>+0.52</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>+0.80</td>
</tr>
<tr>
<td>Platinum (Pt)</td>
<td>+0.86</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>+1.90</td>
</tr>
</tbody>
</table>

FIG. 10.3. Equivalent circuit of electrode pair with input to an EEG amplifier. G = Cerebral generator; Rg = internal resistance of generator; Rt = tissue resistance; Rs = scalp resistance; E1 = electrode potential; Z1 = capacitive and resistive properties of electrodes; R1 and R2 = input resistance (impedance) of amplifier. Redrawn from Geddes (14).
Some Basic: Resistor

- Resistor, R, ohm, Ω
- Voltage drops across a resistor
- Resistance: DC current
- Impedance: AC current
Some Basic: Capacitor

- Capacitance, C, farad, F
- Voltage stored in a capacitor
- Used to in a filter to tune frequency
- Used in combination with R to create HFF, LFF, BPF (notch)
Preamp vs Amp

- Amplifier is usually designed in stages
- Preamp, front-end, high impedance, buffer, usually low gain, LFF, decoupling
- Amp, high gain, HFF
- Using modern operational amplifiers, all functionality can be achieved with a single stage
Input Impedance: Mismatch

• If the electrode impedance (Re) is too high or the amplifier input impedance (Ri) is too low = mismatch

• Because of Ohms Law: \(V = I \times R \), if the \(Re = Ri \), then the voltage measured is 1/2 of the actual.

• If \(Re \) is 1/10th of \(Ri \) then the voltage measured is 90% of actual

• Thus best to make \(Ri >> Re \)

• Usually \(Ri \) is >1M\(\Omega \), \(Re < 20k \Omega \)
Ground and Leakage Current

- Best to ground the patient at one point
- If not possible, make sure that leakage current is low (<3 µA)
- Leakage current is generated by long AC cable and power supply
- Best to have current limiting in all patient leads (std in modern EEG)
Impedance Simplified

Ohm’s Law: \(V = IR \)

R: Resistance (DC) or Impedance (Hz)
EEG Characteristics

- Amplitude: ranges from a few micro-volts to several milli-volts, normal activity around 100 micro-volts
- Frequency: DC to 100 Hz, normal activity 0.5 Hz to 25 Hz (Hz = cycles per sec)
- Note: depth electrodes can “see” higher frequencies (600 Hz) near Sz focus
EEG Machine (analog): paper/ink

From: Tyner et al.
Digital: not much analog left

- Input box
- Amplifier
- A/D converter
- everything else is software
 - montage
 - gain
 - high frequency filter (HFF)
 - low frequency filter (LFF)
 - notch filter (BPF)
EEG Machine (digital): CPU based
Digital Front-End

- Low-frequency filter (LFF), decoupling
- High-frequency filter (HFF), anti-aliasing
- Wide-band, open filter
- All selective filtering performed by software
- Referential based amplifiers
- remontaging performed by software
- Sample/hold, A/D converter
Sensitivity & Gain

- Sensitivity is microvolts (µ) of input to produce 1mm of “pen” deflection (CPU screen), 1µV/mm, 10µV/mm, 100 µV/mm

- Gain is the amplification factor of the preamp. A gain of 1,000 means that an EEG signal of 10µV becomes 10mV
Analog Front-End Filter

- F = 1/2πRC, where RC is the time constant (TC)
- Resistor and Capacitor define 3db down point
- Wide-band recording
- Low frequency is usually 0.5Hz
- High frequency is usually 100Hz
- Digital sample rate > 200Samples/Sec/Chan
Filter Characteristics

- Filters attenuate they do not eliminate
- Filters will attenuate high frequencies, but may reveal low frequency components within
- Filters attenuate spikes, but will not eliminate them, just changes the degree of “sharpness”
- Filters should be used selectively not generally
- Filters will not generate frequencies, unless there is aliasing
- Aliasing is the fold back of frequencies
High Frequency Filtering

Figure 8.20: Frequency response characteristics of HF filters 70 Hz, 35 Hz, and 15 Hz compared with unfiltered channel (DC). S = 10 µV/mm; LF (channel 3) = 0.1 Hz.

- Function generator constant voltage out, sine wave output
- All S = 10 µV/mm
- Input frequency (Hz): 5, 10, 15, 20, 25, 35, 40, 50, 55, 60, 70, 100
HFF Example

FIG. 8.19. Effects of HF filters on high voltage, fast activity. LF = 1 Hz; S = 7 μV/mm.
Effects of HFF and LFF on DC Pulse

FIG. 4.29. Interactive effects of LF and HF filters on step function. (Note decreased amplitude as HF cut-off is lowered and LF cut-off is increased.) Paper speed = 15 mm/sec; 5 = 10 μV/mm; Input = 100 μV.
HFF and LFF

Low Frequency Filter (LFF)
DC Decoupling

\[LF = \frac{1}{2\pi R_1 C_1} \]
\[TC = R_1 C_1 \]

3db down point
db is logarithmic measure
3db down is a reduction of about 30%

High Frequency Filter (HFF)
Anti-aliasing

\[HF = \frac{1}{2\pi R_3 C_3} \]
\[TC = R_3 C_3 \]
Diff/Ref EEG Amplifier

Differential Amplifier

Referential Amplifier

G = R3/R1
HF = 1/(2πR3C3)
LF = 1/(2πR1C1)
Real Differential EEG Amplifier

Referential Amplifier

C1 0.33μF
R1 1MΩ
LFF

F3 E

R2 1MΩ
C2 0.33μF

+ve

Operational Amplifier
(almost any)
Low noise
Low power
small

G=R3/R1
G=100M/1M
G=100

LFF=1/2πR1C1
LFF=1/2π1MΩx0.33μF
LFF=0.5Hz

HFF=1/2πR3C3
HFF=1/2π100MΩx160pF
HFF=100Hz

TC=R1C1 or .33sec
TC=R3C3 or 160x10^{-12} sec or 160psec

Where: μ (micro) is 10^{-6}; p (pico) is 10^{-12}
A/D Converter

- At least 2x (best 5x) any frequency of interest
- >200S/S/Chan, surface
- >700S/S/Chan, invasive
- bit resolution: amplitude
- 8bit 256 levels 1µV to 256µV range
- 12bit 4,096 levels 1µV to 4mV
- 16bit 65,536 levels 1µV to 0.65V
EEG Clinical Applications

- Clinical
- Prolonged (or Day LTM)
- LTM in the EMU
 - LTM with invasive electrodes
- Ambulatory LTM
- cEEG in the NICU
- EEG in the ED
cEEG in the NeuroICU

• Same as LTM in the EMU
• BUT
 – the NICU is not under the control of EEG
 – EEG conflicts with imaging
 – lots of external artifact
 – EEG not the priority
 – on/off of electrodes for imaging
Skin Prep, Electrode Glue, Gels
Surface Electrodes

- Skin is a good insulator and must be prepared to allow some conduction
- Electrodes need to be fixed to the head with a paste or glue such as collodion
- Conductive gel needs to “wet” the scalp and electrode
- Electrode impedance is always deteriorating
Skin Prep, Electrode Glue, Gels

Invasive Scalp Electrodes

- None of the above needed for subdermal needle SNE or subdermal wire electrodes SWE
- SNL: not a chronic electrode
 - rigid needle, needle stick problems
- SWE: is a chronic electrode
 - flexible electrode
- Electrode impedance is steady
Head-Mounted 32-Channel Preamp/Multiplexer

MRI Compatible Electrode Module (1of4)

Quarter for Scale

Head-Waist Signal Cable

Waist-Worn Power Pack

Patient Cable (up to 100ft)
Subdermal Wire Electrode (SWE): 0.25x3mm Ag-Ag/Cl tip
SWE: 3-Stages of Insertion
Conductive Plastic Electrodes
Harness System
Electrodes Ready for Imaging