INTRODUCTION

The following outline is intended to assist candidates in preparation for the CSCN EEG examination. The list is not intended to be "all inclusive" but rather a "guide" to topics that may be covered in the examination.

I. TECHNOLOGY

1. Basic electricity and electronics
 - Ohm's law
 - Measurement and definitions of current, voltage, resistance
 - Capacitors
 - Resistance in series; parallel circuits

2. Electrodes
 - Types
 - Material Characteristics
 - Measurement of resistance/impedance; what is the difference?
 - Nomenclature and rationale of the "10-20" system: how to measure; naming of electrodes including expanded nomenclature and "non-standard" positions.

3. Amplifiers
 - Sensitivity/gain
 - Differential amplifier
 - Common mode rejection ratio
 - Calibration in analog and digital systems
 - Filters
 - High frequency (low pass)
 - Low frequency (high pass)
 - Notch filter
 - Cutoff frequency
 - Roll-off and "order" with digital filters
 - Types of digital filters
 - Finite impulse response (FIR)
 - Infinite impulse response (IIR)
 - Frequency domain filtering; fast Fourier transform (FFT)
 - Frequency response curves related to filters
CANADIAN SOCIETY OF CLINICAL NEUROPHYSIOLOGISTS (CSCN)

EEG EXAMINATION

4. Principles of acquisition of digital EEG
 - Analog to digital conversion
 - Nyquist theorem
 - Aliasing
 - Amplitude resolution and number of "bits"
 - Screen resolution
 - Sample skew
 - System reference and principles of montage reformatting

5. Artifacts
 - Types and "troubleshooting"
 - Physiologic
 - Non-physiologic
 - "Noise"

6. Electrical Safety
 - Leakage current

7. Polarity convention and application to localization

8. Montage design (bipolar, referential, Common average, Laplacian) and comprehension of strengths/weaknesses of each montage

9. Published society guidelines (Canadian Society of Clinical Neurophysiology; American Clinical Neurophysiology Society); see "Reading List"

10. Infection control (with particular reference to electrodes)

II. PHYSIOLOGY

1. Physiology of normal neurons
 - Resting membrane potential; Ion types; Nernst equation
 - Synaptic potentials (EPSPs, PSPs)
 - Action potentials
 - Membrane depolarization and hyperpolarization
 - Voltage gated channels and ligand gated channels
 - Neurotransmitters (type; function, synthesis)
 - Gap junctions
2. Physiology of normal EEG
 Volume conduction
 "Sources and sinks"
 Neuroanatomy-physiology of normal EEG rhythms Thalamo-cortical circuits
 Neurophysiology of normal sleep; anatomie structures; effects on epileptic spikes

3. Pathophysiology of abnormal EEG
 Delta; theta (focal; generalized)
 Paroxysmal depolarization shift (PDS)
 Epileptiform abnormalities (spikes and sharp waves; focal and generalized); excitation and inhibition determining which components of of spikes and slow waves; what part(s) of cortex, thalamus involved.

4. Neurophysiology and anatomy of temporal lobe-hippocampus
 Trisynaptic pathway:origins and connections
 Perforant pathway
 Schaffer collaterals
 Long term potentiation
 Kindling

III. CLINICAL EEG

1. Normal EEG (from prematurity to the elderly)
 Alpha rhythm and its variants
 Mu rhythm and breach rhythms
 Beta
 Theta
 Posterior rhythms (posterior slow of youth; lambda waves)
 Normal drowsy rhythms
 Sleep patterns (posterior occipital sharp transients of sleep; vertex waves, K complexes, sleep spindles, REM sleep)
 Activation procedures
 Hyperventilation responses
 Photic stimulation
 "Benign" transients and rhythms
 Benign epileptiform transients of sleep
 Rhythmic temporal theta burst of drowsiness
 Six per second spike and wave
 14 and 6 positive spikes
 Wicket spikes
 SREDA (sub clinical rhythmic electrographic discharge of adults)
EEG EXAMINATION

2. Abnormal EEG in adults and children

"Nonspecific" Patterns
(a) Theta (focal, generalized)
(b) Delta
 Polymorphie Delta (focal; generalized)
 Intermittent rhythmic delta (frontal intermittent rhythmic delta; occipital intermittent rhythmic delta; temporal intermittent rhythmic delta)
(c) Asymmetries and suppression
(d) Photo convulsive (photoparoxysmal) patterns

Inter-ictal Epileptiform Patterns
(a) Generalized
 "Slow" sharp and slow wave complexes ("slow" spike and wave)
 3 per second spike and wave
 Poly spike and wave
 "Fragments" of generalized spike and wave
 Generalized paroxysmal fast activity

(b) Focal spikes
 Various lobes
 Rolandic
 Multifocal

3. Ictal Patterns
(a) Hypsarrhythmia
(b) Focal
(c) Generalized; including recruiting rhythms, generalized paroxysmal fast

4. Other Characteristic EEG patterns
(a) Triphasic waves
(b) Periodic lateralized epileptiform discharges (PLEDs)
(c) Periodic generalized sharp waves (as in creutzfeldt Jakob disease)
(d) Coma patterns (including burst suppression, alpha-theta coma, spindle coma, coma with diffuse beta; S RPIDS (stimulus induced rhythmic, periodic, or ictal discharges); isoelectric EEG)

5. Neonatal
(a) Normal patterns
 Trace alternans; trace discontinu
 "Brushes"
 Encoches frontales
 Quiet (non-REM) versus active ("REM") sleep
(b) Abnormal Neonatal
6. Abnormal EEG in adults and children

"Nonspecific" Patterns

(a) Theta (focal, generalized)
(b) Delta
 Polymorphie Delta (Focal; generalized)
 Intermittent rhythmic delta (frontal intermittent rhythmic delta;
 occipital intermittent rhythmic delta; temporal intermittent rhythmic
delta)
(c) Asymmetries and suppression
(d) Photo convulsive (photoparoxysmal) patterns

Inter-Ictal Epileptiform Patterns

(c) Generalized
 "Slow" sharp and slow wave complexes ("slow" spike and wave)
 3 per second spike and wave
 Poly spike and wave
 "Fragments" of generalized spike and wave
 Generalized paroxysmal fast activity

(d) Focal spikes
 Various lobes
 Rolandic
 Multifocal